In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells
نویسندگان
چکیده
BACKGROUND Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic stem cells can form bone via the endochondral pathway, thereby turning in-vitro created cartilage into bone in-vivo. In this study we investigated the potential of human adult mesenchymal stem cells to form bone via the endochondral pathway. METHODS MSCs were cultured for 28 days in chondrogenic, osteogenic or control medium prior to implantation. To further optimise this process we induced mineralisation in the chondrogenic constructs before implantation by changing to osteogenic medium during the last 7 days of culture. RESULTS After 8 weeks of subcutaneous implantation in mice, bone and bone marrow formation was observed in 8 of 9 constructs cultured in chondrogenic medium. No bone was observed in any samples cultured in osteogenic medium. Switch to osteogenic medium for 7 days prevented formation of bone in-vivo. Addition of β-glycerophosphate to chondrogenic medium during the last 7 days in culture induced mineralisation of the matrix and still enabled formation of bone and marrow in both human and rat MSC cultures. To determine whether bone was formed by the host or by the implanted tissue we used an immunocompetent transgenic rat model. Thereby we found that osteoblasts in the bone were almost entirely of host origin but the osteocytes are of both host and donor origin. CONCLUSIONS The preliminary data presented in this manuscript demonstrates that chondrogenic priming of MSCs leads to bone formation in vivo using both human and rat cells. Furthermore, addition of β-glycerophosphate to the chondrogenic medium did not hamper this process. Using transgenic animals we also demonstrated that both host and donor cells played a role in bone formation. In conclusion these data indicate that in-vitro chondrogenic differentiation of human MSCs could lead to an alternative and superior approach for bone tissue engineering.
منابع مشابه
Performance of different three-dimensional scaffolds for in vivo endochondral bone generation.
In the context of skeletal tissue development and repair, endochondral ossification has inspired a new approach to regenerate bone tissue in vivo using a cartilage intermediate as an osteoinductive template. The aim of this study was to investigate the behavior of mesenchymal stem cells (MSCs) in regard to in vitro cartilage formation and in vivo bone regeneration when combined with different t...
متن کاملRecapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering.
Mesenchymal stem/stromal cells (MSC) are typically used to generate bone tissue by a process resembling intramembranous ossification, i.e., by direct osteoblastic differentiation. However, most bones develop by endochondral ossification, i.e., via remodeling of hypertrophic cartilaginous templates. To date, endochondral bone formation has not been reproduced using human, clinically compliant ce...
متن کاملM. An In Vitro Bone Tissue Regeneration Strategy Combining Chondrogenic and Vascular Priming Enhances the Mineralization Potential of Mesenchymal Stem Cells In Vitro While Also Allowing for Vessel Formation
Chondrogenic priming (CP) of Mesenchymal Stem Cells (MSCs) and co-culture of MSCs with Human Umbilical Vein Endothelial stem cells (HUVECs) has both been shown to significantly increase the potential for MSCs to undergo osteogenic differentiation and mineralisation in vitro and in vivo. Such strategies mimic cartilage template formation or vascularisation that occur during endochondral ossifica...
متن کاملRat Bone Marrow Mesenchymal Stem Cell Differentiation to Insulin Producing Cells and Evaluation their Responses in Vitro and in Vivo
Background In recent years, many researchers haveattempted to cure diabetes by using stem cells technology. Stem cells from different sources have capabilityto differentiateinto insulin producing cells (IPCs) by different methods. The obstaclesof these methods aretheirexpensive materials and complexity ofmethodswhichare practicallydisadvantagesfor producing enough transplantableIPCs that can ...
متن کاملControlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification
Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To ...
متن کامل